# KAJIAN RISIKO KEGAGALAN OPERASIONAL PADA PEMBANGKIT LISTRIK TENAGA GAS DAN UAP (PLTGU)

## Nur Hanifah Azzahra<sup>1</sup>; Jusafwar<sup>2</sup>; Nusyirwan<sup>3</sup>

Program Studi Pembangkit Tenaga Listrik, Jurusan Teknik Mesin, Politeknik Negeri Jakarta, Jalan Prof. Dr. G. A. Siwabessy, Kampus UI, Depok 16425

<sup>1</sup>nurhazra102@gmail.com; <sup>2</sup>jusafwar@yahoo.com; <sup>3</sup>nusyirwan2008@yahoo.com

#### Abstrak

Pembangkit listrik tenaga gas dan uap (PLTGU) merupakan pembangkit listrik dengan sistem operasi kombinasi. PLTGU memproduksi listrik dengan media gas panas dan steam untuk memutarkan turbin yang dikopel dengan generator. Pada UU NO.15 Tahun 1985 suatu pembangkit listrik dituntut akan keandalannya untuk dapat menghasilkan listrik. Namun, Kegiatan operasional pada PLTGU tidak sepenuhnya berjalan sesuai rencana. Berbagai faktor dapat menjadi pemicu terjadinya gangguan. Menjadikan sistem ketenagalistrikan yang efisien dan handal mengharuskan adanya manajemen yang baik. Oleh karena itu dibutuhkan antisipasi terhadap adanya risiko kegagalan. Penelitian ini bertujuan mengetahui dan mengelola kemungkinan adanya risiko kegagalan operasional pada PLTGU sehingga diharapkan dapat menjadi referensi dalam mengantisipasi risiko yang mengakibatkan hilangnya produksi listrik. Proses dalam penelitian mengacu pada International Organization for Standardization (ISO) 31000 menggunakan matriks risiko. Proses dilakukan pada PT X dengan mengidentifikasi dan menganalisa risiko. Melalui matriks risiko didapatkan 3 nilai tertinggi dari risiko kegagalan. Tiga risiko dengan nilai tertinggi tersebut dilakukan analisa menggunakan metode Failure Mode and Effect Analysis (FMEA). Maka diketahui adanya risiko yang mempengaruhi faktor operasional PLTGU diantaranya yaitu pasokan bahan bakar rendah, sistem pendingin terganggu dan risiko Circulating Water Pump failure. Sehingga dapat ditentukan perlakuan terhadap risiko kegagalan berupa tidak lanjut sesuai dengan penyebab dari risiko.

Kata Kunci: FMEA, Keandalan, PLTGU, Risiko Kegagalan, Operasional

#### Abstract

Gas and steam engine power plant (PLTGU) is a power plant with a combined operating system. PLTGU produces electricity with hot and steam media to rotate turbines coupled with generators. In Law No. 15 of 1985 a power plant is required for its reliability to produce electricity. However, operational activities in PLTGU are not fully implemented as planned. Various factors can trigger the occurrence of interference. Making efficient and reliable power systems requires good management. Therefore, anticipation of the risk of failure is required. This study aims to determine and manage the possibility of operational failure risk in PLTGU so it is expected to be a reference in anticipating the risks that result in loss of electricity production. The research process refers to the International Organization for Standardization (ISO) 31000 using a risk matrix. The process is performed on PT X by identifying and analyzing risk. Through the risk matrix obtained 3 the highest value of the risk of failure. Three risks with the highest value were analyzed using Failure Mode and Effect Analysis (FMEA) method. It is known that there are risks that affect the operational factors of PLTGU such as low fuel supply, cooling system disrupted and risk of Circulating Water Pump failure. So it can be determined the treatment of the risk of failure in the form of not advanced according to the cause of the risk.

Keywords: FMEA, Reliability, PLTGU, Failure Risk, Operational

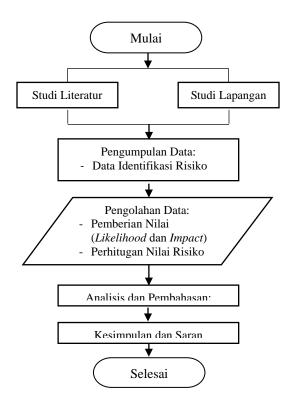
### 1. PENDAHULUAN

### 1.1 Latar Belakang

Seiring dengan kemajuan teknologi saat ini, permintaan akan kebutuhan listrik masyarakat semakin meningkat. Pemerintah pun terus berkonsentrasi terhadap pembangunan sarana pembangkit listrik dengan kapasitas 35.000 MW[1]. Saat ini sudah sangat berkembang sistem Pembangkit listrik tenaga gas dan uap (PLTGU) yang merupakan pembangkit listrik dengan sistem kombinasi PLTG dan PLTU. PLTGU merupakan sistem pembangkitan dengan peringkat efisiensi tertinggi. Rata-rata pada PLTGU memiliki efisiensi mencapai 35-50%[2]. Keunggulan PLTGU beroperasi yaitu dengan memanfaatkan gas panas hasil pembakaran PLTG untuk menghasilkan steam yang merupakan media produksi PLTU.

PT. X merupakan perusahaan pembangkit listrik yang mengoperasikan beberapa sistem, salah satunya sistem pembangkit listrik tenaga gas dan uap (PLTGU). Pada PLTGU PT X memiliki kapasitas 740 MW, yang terdiri dari 1 Blok PLTGU dengan 2 *Gas Turbine*, 2 *Heat Recovery Steam Generator (HRSG)* dan 1 *Steam Turbine*. PLTGU ini menggunakan bahan bakar gas alam sebesar 100 [BBTU] per hari dengan tegangan keluar sebesar 150 [kV].

Meningkatnya penggunaan listrik, membutuhkan sistem pembangkit listrik dengan kualitas serta kuantitas yang baik dalam memenuhi kebutuhan listrik. Namun, Kegiatan operasional pada tidak sepenuhnya berjalan sesuai rencana. Berbagai faktor internal ataupun eksternal dapat menjadi pemicu terjadinya gangguan dan hilangnya suplai listrik ke konsumen. Sehingga memungkinkan adanya risiko kegagalan pada operasional. Menjadikan sistem ketenagalistrikan yang efisien dan handal mengharuskan adanya manajemen yang baik dalam mengimplementasikan semua aspek tata kelola pembangkit tenaga listrik. Salah satunya dengan manajemen risiko. Oleh karena itu dibutuhkan antisipasi terhadap risiko kegagalan, dengan mengetahui dan mendalami kelangsungan operasional PLTGU. Makalah ini bertujuan sebagai referensi dalam mengantisipasi kegagalan operasional pada PLTGU.


## 1.2 Tujuan Penelitian

Adapun tujuan yang dikemukakan pada tugas akhir ini sebagai berikut:

- 1. Mengidentifikasi risiko kegagalan yang berpengaruh terhadap operasional PLTGU
- 2. Menentukan tindakan pengelolaan atas risiko yang ada pada PLTGU.

## 2. METODE PENELITIAN

## 2.1 Diagram Alir



Gambar.1 Diagram Alir

## 2.2 Langkah Penelitian

## a. Studi literatur dan studi lapangan

Studi literatur merupakan metoda pengumpulan informasi terkait permasalahan yang terjadi dengan mempelajari buku dan jurnal. Sedangkan studi lapangan merupakan pengamatan secara langsung pada PLTGU PT X terkait permasalahan.

## b. Pengumpulan Data

Pengumpulan data dilakukan pada PLTGU PT X data meliputi identifikasi sumber risiko, penyebab risiko dan peristiwa risiko. Risiko ini adalah mode kegagalan operasional yang kemungkinan terjadi. Identifikasi risiko dilakukan berdasarkan pengelompokan subsistem PLGTU. Data dikumpulkan melalui proses interview, brainstrorming dan penyebaran kuesioner dengan berbagai pihak terkait.

## c. Pengolahan data

#### - Pemberian nilai

Pengolahan data dilakukan dengan memberian nilai pada data identifikasi risiko. Pemberian nilai dilakukan terhadap *likelihood* dan *consequence* dari suatu risiko. Penilaian likelihood berdasarkan frekuensi kejadian suatu mode kegagalan dan nilai *consequence* berdasarkan dampak dari suatu mode kegagalan. Skala yang digunakan pada penilaian yaitu antara 1 sampai dengan 5.

- Perhitungan data identifikasi risiko

Setelah pemberian nilai, selanjutnya dilakukan perhitungan pada data identifikasi risiko. Perhitungan dilakukan dengan mengkalikan nilai likelihood dan nilai *consequence* sebagai nilai dari resiko kegagalan pada operasional[3]. Rumus perhitungan risiko terdapat pada persamaan (1).

$$\mathbf{R}_i = \mathbf{f}(\mathbf{F}_i \cdot \mathbf{C}_i) \dots (2.1)$$

R = Risiko

F<sub>i</sub> = Frekuensi dari sebuah kejadian

C<sub>i</sub> = konsekuensi dari sebuah kejadian

## d. Analisis dan Pembahasan

Analisis merupakan tahap untuk menentukan level risiko. Analisis pada risiko dilakukan untuk mengetahui level suatu risiko kegagalan yang teridentifikasi. Level risiko ditentukan berdasarkan perhitungan nilai *consequence* dan frekuensi kegagalan. Selanjutnya disusun berdasarkan risiko prioritas sebagai ketentuan level risiko[4]. yang disusun pada table 1.

| Table | 1 | I evel | Riciko |
|-------|---|--------|--------|

| Level            | Consequences                     | Likelihoods    | Risk Prioritas |
|------------------|----------------------------------|----------------|----------------|
| $\boldsymbol{A}$ | Insignificant Or Negligible      | Rare           | I avu          |
| В                | Minor                            | Unlikely       | —— Low         |
| $\overline{C}$   | Moderate                         | Possible       | Medium         |
| $\overline{D}$   | Major                            | Likely         | High           |
| E                | Catastrophic Or Severe For Risks | Almost Certain | Extreme        |

Dale Copper, dkk 2015

Kemudian nilai dari risiko kegagalan dikelompokan berdasarkan matriks risiko. Risiko yang masuk dalam kategori kritikal berdasarkan nilai risiko tertinggi dengan tingkat "Ekstrem". Risiko kegagalan dengan status ekstrim selanjutnya dilakukan pengelolaan dengan menggunakan metode FMEA.

| Table.2 | Basic | Priority- | Setting | Matrix |
|---------|-------|-----------|---------|--------|
|         |       |           |         |        |

| Likelikeed | Consequence |             |  |
|------------|-------------|-------------|--|
| Likelihood | low         | High        |  |
| High       | Medium risk | High risk   |  |
| low        | Low risk    | Medium risk |  |

Dale Copper, dkk 2015

#### e. Hasil akhir

Hasil akhir merupakan hasil dari analisis dan pembahasan yang telah dilakukan, untuk dapat diambil suatu kesimpulan untuk menjawab permasalahan yang ada.

## 3. HASIL DAN PEMBAHASAN

Konteks untuk menentukan risiko kegagalan yang akan dibahas mengacu pada keandalan yang merupakan indikator pembangkit listrik. Kegagalan di identifikasi berdasarkan susunan aktivitas PLTGU yang terbagi menjadi beberapa aspek, yaitu keadaan bahan bakar,keadaan lingkungan, performa peralatan, tools dan material, sumber daya manusai, dan kondisi operasi. Dari data identifikasi didapatkan 31 mode kegagalan operasional.

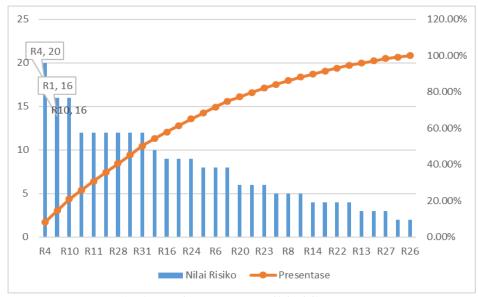

Mode kegagalan yang menjadi variabel selanjutnya dilakukan analisis untuk mengetahui nilai dari risiko dan sebagai penentu risiko yang sangat berpengaruh terhadap operasional PLTGU. Untuk menentukan nilai risiko, dilakukan perhitungan dengan mengkalikan hasil penilaian *likelihood* dan *consequence* dari kegagalan.

Table.3 Identifikasi Risiko Kegagalan Operasional PLTGU

| Aamalr             | Kode |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | Nilai                                               | Nilai       | Nilai  |
|--------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------|-------------|--------|
| Aspek              | Kode | ranure Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Identifikasi Kisiko          | Frequense  4  3  2  5  2  1  1  4  3  2  1  1  1  4 | consequence | Risiko |
| Z &                | R1   | Pasokan Bahan Bakar<br>Rendah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pasokan bahan bakar<br>turun | 4                                                   | 4           | 16     |
| BAHAN<br>BAKAR     | R2   | CO2 Pada Bahan Bakar<br>Tinggi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | maksimal 3                   | 3                                                   | 9           |        |
| B                  | R3   | Rendah dapat disupplai 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                            | 4                                                   | 8           |        |
| Z                  | R4   | Musim Penghujan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Saringan kotor               | 5                                                   | 4           | 20     |
| [A]                | R5   | Banjir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peralatan terendam           | 2                                                   | 5           | 10     |
| KONDISI ALAM       | R6   | Air Laut Surut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level air pendingin turun    | 2                                                   | 4           | 8      |
|                    | R7   | Tsunami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit Trip                    | 1                                                   | 5           | 5      |
| Ó                  | R8   | Gempa Bumi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kerusakan peralatan          | 1                                                   | 5           | 5      |
| K                  | R9   | Pasokan Bahan Bakar Rendah  CO2 Pada Bahan Bakar Tinggi  Pressure Bahan Bakar Rendah  Rendah  Pembakaran tidak maksimal  Bahan bakar tidak dapat disupplai  Musim Penghujan  Saringan kotor  Peralatan terendam  Level air pendingin turun  Tsunami  Unit Trip  Gempa Bumi  Kebakaran  Unit Trip  Lube Circulating Water Pump Failure  Kotor Pada Kondensor  Kebocoran Pada Kondensor  Kebocoran Pada Pipa & Valve HRSG  Tidak Terdapat Pembakaran Pada Ruang Bakar  Pasokan bahan bakar turun  Pembakaran tidak dapat disupplai  Bahan bakar tidak dapat disupplai  Capital Rembakaran tidak maksimal  Pembakaran tidak maksimal  Peralatan terendam Level air pendingin turun  Circulating Water Pump (CWP) Trip  Daerating/penurunan beban  Daerating/penurunan beban  Tidak Terdapat Pembakaran Pada Ruang Bakar | 1                            | 5                                                   | 5           |        |
| Z                  | R10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                            | tan 1 1 r 4 p                                       | 4           | 16     |
| LATA               | R11  | Kotor Pada Kondensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 3                                                   | 4           | 12     |
| PERA               | R12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 2                                                   | 4           | 8      |
| 3MA                | R13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 1                                                   | 3           | 3      |
| PERFORMA PERALATAN | R14  | Pembakaran Pada Ruang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gas trubin trip              | 1                                                   | 4           | 4      |
|                    | R15  | TCA Fan Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Daerating/penurunan          | 3                                                   | 4           | 12     |

|                    |                           |                                     | beban                                   |   |   |    |
|--------------------|---------------------------|-------------------------------------|-----------------------------------------|---|---|----|
|                    | R16                       | Damper Failure                      | Open cycle                              | 3 | 3 | 9  |
|                    | R17                       | Pendinginan H2<br>Pressure Rendah   | Generator panas/ Unit trip              | 1 | 4 | 4  |
|                    | R18                       | Proteksi Tidak Berfungsi            | Gangguan/Peralatan<br>Trip              | 1 | 3 | 3  |
|                    | R19                       | Ketidaktersediaan Data<br>Material  | Keterlambatan<br>pengerjaan/perbaikan   | 3 | 3 | 9  |
| TOOLS & MATERIAL   | R20                       | Keterlambatan Sparepart<br>Kritikal | Keterlambatan pengerjaan/perbaikan      | 2 | 3 | 6  |
| TOO]               | R21                       | Kesalahan Spesifikasi               | Keterlambatan pemeliharaan              | 2 | 3 | 6  |
|                    | R22                       | Kerusakan Material & Tools          | Keterlambatan pemeliharaan              | 2 | 2 | 4  |
|                    | R23                       | Kekurangan Jumlah<br>SDM            | Pekerjaan sulit terkendali/Vendor       | 2 | 3 | 6  |
|                    | R24                       | Minimnya Tenaga Ahli                | Pekerjaan sulit terkendali/Vendor       | 3 | 3 | 9  |
| SDM                | R25                       | Pemindahan Tenaga<br>Kerja          | Pekerjaan sulit terkendali              | 1 | 2 | 2  |
|                    | R26                       | Tidak Bekerja Sesuai<br>SOP         | kegiatan operasional<br>kurang maksimal | 1 | 2 | 2  |
|                    | R27                       | Kinerja Rendah                      | kegiatan operasional<br>kurang maksimal | 1 | 3 | 3  |
|                    | R28 Change Over Peralatan |                                     | Pemakaian sendiri<br>meningkat          | 3 | 3 | 9  |
| KONDISI<br>OPERASI | R29                       | Start UP Berulang                   | Life time peralatan turun               | 4 | 3 | 12 |
| KON                | R30                       | Tingginya Frekuensi<br>Blowdown     | Daya rendah                             | 2 | 2 | 4  |
|                    | R31                       | Perubahan Vacum<br>Kondensor        | Penurunan beban                         | 3 | 4 | 12 |

Setelah diketahui nilai risiko, selanjutnya dianalisa dengan menggunakan pareto diagram. Dari 31 risiko maka didapatkan tiga risiko tertinggi. Terlihat pada gambar 2 grafik pareto diagram;



Gambar.2 Diagram Pareto Nilai Risiko

Diketahui dari diagram paroto diatas, terdapat 3 risiko memiiki tingkat tertinggi dengan presentasi yang masih dibawah 20%, yaitu R4, R1 dan R10. Kemudian setelah diketahui nilai suatu risiko, maka disusunlah urutan prioritas risiko. Nilai suatu risiko dikelompokan berdasarkan tingkatan risiko, mulai dari tingkat risiko tertinggi, sampai pada resiko terendah. Risiko yang tidak dapat diterima/ditoleransi merupakan suatu risiko yang dapat menjadi prioritas untuk segera ditangani. Mengetahui besarnya tingkat risiko dan prioritas risiko, maka perlu disusun suatu peta risiko melalui matriks risiko. Risiko dengan nilai 15-25 memiliki status extreme dan harus dilakukan tindakan lebih lanjut untuk menurunkan atau bahkan menghilangkan risiko kegagalan tersebut;

Table 4 Matriks Risiko

|       |               | KONSEKUENSI      |          |               |                   |              |  |
|-------|---------------|------------------|----------|---------------|-------------------|--------------|--|
| ITAS  |               | Tidak<br>Beratri | Kecil    | Sedang        | Besar             | Sangat Besar |  |
| BII   | Sangat Jarang |                  | R25, R26 | R13, R18, R27 | R14, R17          | R7, R8, R9   |  |
|       | Jarang        |                  | R22, R30 | R20, R21, R23 | R3, R6, R12       | R5           |  |
| PROBA | Moderat       |                  |          | R16, R19, R24 | R2, R11, R15, R31 |              |  |
| PR    | Hampr Pasti   |                  |          | R28, R29      | R10, R1           |              |  |
|       | Pasti         |                  |          |               | R4                |              |  |

Keterangan:

| Low | Medium | High   | Extreme |
|-----|--------|--------|---------|
| 1-3 | 4-6    | 8 – 12 | 15 - 25 |

Pada matriks risiko menunjukan bahwa terdapat 5 risiko dengan tingkat *low*, 10 risiko dengan tingkat *moderat*, 13 risiko dengan tingkat *high* dan 3 risiko dengan tingkat *ekstrim*. Risiko dengan tingkatan ekstrim

yaitu risko dengan kode R1, R4 dan R10 yang merupakan risiko kegagalan akibat kualitas bahan bakar, keadaan saat musim penghujan dan kegagalan saat CWP *lube low*.

#### FMEA Pada Risiko Extreme

Pengelolaan risiko extreme dengan menggunakan metode FMEA. Diawali dengan identifikasi risiko yang mempengaruhi pembangkit, penyebab-penyebab dari adanya risiko, dampak atau pengaruh dari penyebab risiko serta pengelolaan atau pencegahan agar penyebab risiko tidak dapat terjadi. Berikut FMEA yang dihasilkan dari risiko extream berupa dampak, penyebab dan metode pencegahannya, dapat dilihat pada Tabel 2.

Table 5 FMEA Risiko ekstrem

| Kode | Risiko                                                                                                | Kemungkinan<br>Penyebab              | Kemungkinan<br>Dampak                  | Pencegahan                                                               |  |
|------|-------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------------------------------|--|
| R4   | Apabila Saringan Pendingin<br>Kotor, Pengurangan Daya<br>Sebesar 115 Mw                               | Biota laut terbawa<br>aliran         | Flow system pendingin rendah           | Pembersihan sistem<br>saringan secara<br>berkala                         |  |
|      | Angleila Dagalan Dahan                                                                                | Permasalahan pada<br>pipa distribusi | Bahan bakar<br>tidak ada suplai        | Menyediakan bahan<br>bakar lain (HSD)<br>Kontrak dengan<br>suplayer lain |  |
| R1   | Apabila Pasokan Bahan Bakar Rendah, terjadi                                                           | Pressure bahan<br>bakar rendah       | Bahan bakar<br>tidak ada suplai        | Menambahkan compresor gas                                                |  |
| KI   | pengurangan daya Sebesar<br>93 [Mw]                                                                   | Harga bahan bakar                    | Boros<br>penggunaan<br>bahan bakar gas | Mengatur pola pembebanan yang tepat.                                     |  |
|      |                                                                                                       | terjadi kenaikan                     |                                        | Antisipasi<br>menggunakan<br>bahan bakar lain                            |  |
|      |                                                                                                       | Strainer & Screen kotor              | Flow rendah                            | pemeliharaan pada<br>strainer secara rutin                               |  |
|      | Apabila Circulating Water Pump Failure. Steam Turbine trip, terjadi pengurangan Daya sebesar 260 [MW] | Pompa CWP lube<br>Failure            | Flow lube pump<br>low/hunting          | Pengecekan rutin<br>pada level air laut<br>dan flow CWP                  |  |
| R10  |                                                                                                       | CWP motor Cooling                    | CWP motor trush                        | Pengecekan rutin pada pendinginan                                        |  |
|      |                                                                                                       | Flow Low bearing h temperati         |                                        | Analisis kembali<br>proses pendinginan<br>pada CWP                       |  |

### 4. KESIMPULAN

- a. Risiko kegagalan operasional pada PLTGU PT.X diketahui, terdapat 5 risiko dengan tingkat *low*, 10 risiko dengan tingkat *moderat*, 13 risiko dengan tingkat *high* dan 3 risiko dengan tingkat ekstrem.
- b. Hasil dari analisis risiko kegagalan operasional PLTGU PT.X, terdapat 3 risiko ekstrem yang memerlukan tindak lanjut untuk menurunkan tingkat risiko, diantaranya;
  - Risiko kegagalan akibat strainer pendingin kotor yang berakibat pengurangan daya sebesar 115 [MW], dengan melakukan tindakan mitigasi atau pencegahan berupa pembersihan saringan secara berkala.
  - Pasokan bahan bakar rendah berakibat pengurangan daya sebesar 93 [MW], dengan melakukan tindakan mitigasi berupa penyediaan bahan bakar lain
  - Circulating Water Pump rusak berakibat pengurangan daya sebesar 260 [MW], dengan melakukan tindakan mitigasi berupa pengecekan kembali pada auxiliary CWP

## 5. DAFTAR PUSTAKA

- [1] ESDM, "Program 35.000 MW," 2017. [Online]. Available: www.esdm.go.id. [Accessed: 16-Maret-2018].
- [2] Nusyirwan. Manajemen pembangkit tenaga listrik. Jakarta: INSTITUT SAINS DAN TEKNOLOGI NASIONAL 2010
- [3] Michel Nicolet-Monnier, dkk. Quantitative Risk Assessment of Hazardous Materials Transport Systems. :1996
- [4] Cooper, D., Grey, S., Raymond, G., & Walker, P. (2005). Project Risk Management Guidelines. West Sussex: John Wiley & Sons Ltd